Home
Schedule
Conference Info
Sponsorship Information
IBM Watson AI Day
Registration
Press Registration
Speakers
Sessions
Sponsors
Exhibitors
JETRO × Six Prefectures of Japan Pavilion Exhibitors
  Media Sponsors
  Topics
  Call For Papers
  Hotel Info
  Past Events
Untitled Document
2017 West
Premium Sponsors
Diamond



Platinum
@DevOpsSummit

Bronze










Untitled Document
2017 West
Keynote Sponsor


Untitled Document
2017 West Exhibitors
























@ThingsExpo











Untitled Document
2017 West Media Sponsors














Untitled Document
2017 East
Premium Sponsors
Diamond



Platinum
@DevOpsSummit

@DevOpsSummit

Silver
@DevOpsSummit


Bronze










Untitled Document
2017 East Exhibitors
@DevOpsSummit




































Untitled Document
2017 East Media Sponsors
















Untitled Document
2016 West
Premium Sponsors
Platinum Plus



Silver
@ThingsExpo

Bronze







Untitled Document
2016 Welcome Reception Sponsor

Untitled Document
2016 West Exhibitors










@DevOps Summit






@DevOps Summit

@WebRTC Summit












@WebRTC Summit









@DevOps Summit

Untitled Document
2016 West Media Sponsors











Untitled Document
2016 East Gold Sponsors

@ThingsExpo

Untitled Document
2016 East Silver Sponsors


@DevOps Summit

Untitled Document
2016 East Bronze Sponsors

Cloud Expo







Cloud Expo

Untitled Document
2016 East Vendor Presentation Sponsors

@DevOps Summit

Untitled Document
2016 East Exhibitors

@DevOps Summit





@ThingsExpo



@DevOps Summit

@ThingsExpo


@DevOps Summit









@DevOps Summit







@DevOps Summit










Untitled Document
2016 East Media Sponsors










Untitled Document
2015 West Gold Sponsors

Untitled Document
2015 West Silver Sponsor


Untitled Document
2015 West Bronze Sponsors

Cloud Expo |@ThingsExpo

Cloud Expo | DevOps Summit


@ThingsExpo





@DevOps Summit

@ThingsExpo


@ThingsExpo

 


Untitled Document
2015 West Exhibitors












@DevOps Summit





@DevOps Summit












@DevOps Summit

@DevOps Summit




@ThingsExpo


@DevOps Summit

 


Untitled Document
2015 West E-Bulletin Sponsors

DevOps Summit

Untitled Document
2015 West
Associate Sponsor

Untitled Document
2015 West Media Sponsor

Untitled Document
2015 East Gold Sponsors


WebRTC Summit

DevOps Summit

Untitled Document
2015 East Silver Sponsors
DevOps Summit
WebRTC Summit

Untitled Document
2015 East Bronze Sponsors

DevOps Summit

Cloud Expo | DevOps Summit
@ThingsExpo

DevOps Summit

DevOps Summit

Untitled Document
2015 East Delegate Bag Sponsors


Untitled Document
2015 East Exhibitors

DevOps Summit


@ThingsExpo



DevOps Summit






Cloud Expo | @ThingsExpo
Internet of @ThingsExpo
@ThingsExpo
DevOps Summit

DevOps Summit
@ThingsExpo
DevOps Summit
DevOps Summit
DevOps Summit
DevOps Summit
DevOps Summit



@ThingsExpo

Untitled Document
2015 East Associate Sponsor

Untitled Document
2015 East
Media Sponsors

AI Is About Machine Reasoning | @CloudExpo @ReneBuest #AI #ML #DX #ArtificialIntelligence
What are you going to do when the data only exist in the heads of your employees?

Machine Learning needs tons of data. But what are you going to do when the data only exist in the heads of your employees?

Machine Learning, Deep Learning, Cognitive Computing, Robotic Process Automation (RPA), Natural Language Processing (NLP), Machine Perception, Predictive APIs, Image Recognition, Speech Recognition, Virtual Agent, Intelligent Assistant, Personal Advisor, Chatbot, Semantic Search. Did I miss anything? I am sure I did. However, I guess I provide a good list for your next round of Artificial Intelligence (AI) bullshit bingo. Oh, one last thing - Machine Reasoning! If you've never heard about this term before, just read until the end and you will get its idea and importance for AI.

AI Hits Puberty but Gives Enterprises a New Hope
In 1955 Prof. John McCarthy already defined AI as the goal to develop machines that behave as though they were intelligent. However, according to a Forrester survey after 62 years, the majority of enterprises worldwide are still in an early stage. Around 60 percent researches on AI including market, solutions, platforms, vendors, skills and techniques. Further 39 percent are in the phase of identifying and designing AI capabilities they can deploy and 36 percent are educating the business or building the business case. Only a fifth (19 percent) is testing AI capabilities in their own environment and 14 percent are already training their deployed AI system.

However, enterprises see lot of potential in AI and its technologies as part of a strategic benefit for their organization. Most of them (57 percent) believe that AI will improve the customer experience and support. However, the more interesting part is that 43 percent believe that AI provides them with the ability to disrupt their industry with new business models, products and services. Further 42 percent think, that AI allows them to develop new products and services. I can't agree more on the last two results mentioned, since several customers of ours already have started their AI journey. In doing so, they have started building an AI-enabled Enterprise based on a semantic data graph and the data and knowledge they hold within their entire enterprise stack.

Artificial Intelligence in a Nutshell: About Smart Machines and Teaching Children
Following Prof. McCarthy's AI definition above, we are talking about a vigorous system.

  • A system which must be considered as a raw IQ container
  • A system that needs unstructured input to train its sense
  • A system that needs a semantic understanding of the world to be able to take further actions
  • A system that needs a detailed map of its context to act independently and transfer experience from one context to another
  • A system that is equipped with all the necessities to develop, foster and maintain knowledge

And it is our responsibility to share our knowledge with these machines as we would share it with our children, spouses or colleagues. This is the only way to transform these machines, made of hard- and software, into a status we would describe as "smart", helping them to become more intelligent by learning on a daily basis, building the groundwork to create a self-learning system.

It is kind of rude to compare raising a child with teaching a machine. However, it follows basically the same principles. In 1950, Alan Turing in his paper "Computing Machinery and Intelligence" described the idea of teaching a machine with the essentials of teaching a child. He described three stages:

  1. The initial state of the mind (at birth)
  2. The education to which it has been subjected
  3. Other experience to which it has been subjected that are not to be described as education

Defining these steps of the process, Turing discussed whether it would be more reasonable to program a child's mind and subject the child's mind to a period of education afterwards. He compared a child to a brand-new notebook and thought that it would be much easier to program because of its simplicity.

Get more background on knowledge and the importance for AI in our current Gartner Newsletter "Knowledge is the Ticket to an AI-enabled Enterprise".

Machine Learning in a Nutshell: Jump into Your Data Lake - Again and Again
Machine learning (ML) is a discipline where a program or system can dynamically alter its behavior based on the ever-changing data. Therefore, the system has the ability to learn without being explicitly programmed. In doing so, algorithms enable systems to make data-driven decisions or predictions by building a model from sample inputs. A system then simply does not just memorize the samples but recognizes patterns and regularities within.

The goal of ML algorithms is to find specific patterns in (large) data sets. However, the supreme discipline is to find the right patterns in all related data sources since random patterns can be simply found everywhere. According to Crisp Research analyst Bjoern Boettcher the most common used algorithms right now are:

  • Regression Algorithms
  • Instance-based Algorithms
  • Decision Tree Algorithms
  • Bayesian Algorithms
  • Clustering Algorithms
  • Artificial Neural Network Algorithms
  • Deep Learning
  • Dimensionality Reduction

Once an algorithm has successfully identified a reasonable pattern, further algorithms respectively mathematic procedures can be used to create a new subset of data and identify new patterns. Thus, the entire system is optimizing the existing knowledge or "learning". In general, four types of learning are distinguished:

  • Supervised Learning
  • Unsupervised Learning
  • Reinforcement Learning
  • Semi-supervised Learning

Facebook's News Feed is a good example for machine learning to personalize each member's feed. Meaning, a member who frequently stops scrolling to read or like a certain post of a friend will see more of that friend's activity.

So far, the biggest market of the AI universe seems to be machine learning. At Arago we easily have identified over 100 companies offering solutions and services, including cloud companies like Amazon Web Services, Microsoft Azure or Google. But also smaller companies as well as start-ups are going to try their luck. Ergo, what has started as a blue ocean has quickly turned into a red ocean where the differentiation just turns out in minor parts respectively in the hidden algorithms implemented in the back-ends.

Bottom line, machine learning helps to identify patterns within data sets and thus tries to make predictions based on the existing data. However, most important is to check the plausibility and correctness of the results since you can always find something in endless sets of data. And that's also one of the drawbacks if you consider machine learning as a single concept. Machine learning needs lots of sample data or data in general to learn and be able to find valuable information respectively results in patterns. A fact, Jerry Kaplan highlights as one crucial drawback saying that machine learning is not useful in situations where "[...] there's no data, just some initial conditions, a bunch of constrains, and one shot to get it right."

So, machine learning is basically like jumping into your data lake of endless waters again and again fishing for the next big catch.

Machine Reasoning in a Nutshell: Teaching the Machine with Human Experience

Machine reasoning (MR) systems generate conclusions from available knowledge by using logical techniques like deduction and induction. Thus, machine reasoning systems build the foundation for knowledge-based environments. Reasoning expert Léon Bottou defines [machine] reasoning as an "algebraically manipulating previously acquired knowledge in order to answer a new question". However, reasoning systems come in different approaches that vary in expressive power, in predictive abilities as well as computational requirements. Bottou classifies seven types of approaches:

  • First order logic reasoning
  • Probabilistic reasoning
  • Causal reasoning
  • Newtonian mechanics
  • Spatial reasoning
  • Social reasoning
  • Non-falsifiable reasoning

Everyone who wants to get a scientific perspective on Machine Reasoning I recommend to read the Léon Bottou's paper "From Machine Learning to Machine Reasoning".

Kaplan describes reasoning systems as a concept that deconstructs "[...] tasks requiring expertise into two components: "knowledge base" - a collection of facts, rules and relationships about a specific domain of interest represented in symbolic form - and a general-purpose "inference engine" that described how to manipulate and combine these symbols." As one of the biggest advantages of reasoning systems Kaplan states that based on facts and rules those kinds of systems can be modified more easily since new facts and knowledge are incorporated. In doing so, reasoning systems are taught by "knowledge engineers" who interview practitioners and "[...] incrementally incorporating their expertise into computer programs [...]". This structure makes it also much more convenient to explain the reasoning to the system.

How Does a Sophisticated Machine Reasoning System Look Like Today?

Talking reasoning systems today, the abilities and thus requirements differ from the ones described by Bottou and Kaplan above. Today, an AI technology based on a sophisticated machine reasoning system has the characteristics to empower a system

  • to learn on its own.
  • to find solutions on its own.
  • to discover the world on its own.
  • to understand the world based on concepts (ontology).

The ontology can be explained by how children learn a language. They do learn by listening and then being taught sentences in school together with the right grammar. The ontology is taught by people. People define things for the ontology that should define a common language. And thus, the machine is able to work with that language.

To create a knowledge pool for an AI system, experts need to teach the AI with their contextual knowledge that includes the what, when, where and why. They have to teach the AI with atomic pieces that can be prioritized by the AI. Context and indexing enable these atomic pieces to be combined to form many solutions afterwards.

To achieve the three steps above, a today's sophisticated machine reasoning system is built on four pillars:

  • Learning: First, a system has to be taught. This can be done by single experts or a community is used where people teach the machine bits of knowledge. This is what the machine uses to be able to learn on its own. You might think this way it doesn't learn on its own, but it does. Consider how a child learns. It learns by being taught by his parents, teacher, other children or anyone else teaching things and it just copies and pastes everything with its "sensors" like ears and eyes. Thus, the AI learns best practices and reasoning from experts. Knowledge is taught in atomic pieces of information that represent individual steps of a process.
  • Semantic Graph: The taught knowledge has to be stored, which is done within a data store. The store is used to supply information for the understanding of the world doing semantic reasoning. Like: I know that my mom is connected to dad. And I am connected to my sister. And my sister is connected to her work colleagues. And she works in this city in that building. This is a semantic map of the world that we know. That is part of our memory - a semantic graph. By creating a semantic data map, the AI understands the world in which it operates.
  • Process Engine: The engine is the central back-end service that puts everything together and thus delivers a solution to a certain problem. The engine knows the map of the world where a system is acting in. In doing so, the engine takes everything it knows and finds the correct solution to a specific problem on its own, step by step based on the knowledge it has.
  • Problem Solving: Problem solving also known as machine reasoning (MR) is the ability to dynamically react to change and by doing this, reusing existing knowledge for new and unknown problems. With machine reasoning, problems are solved in ambiguous and changing environments. The AI dynamically reacts to the ever-changing context, selecting the best course of action. Thus, machine reasoning is the basis for a general artificial intelligence (General AI).

Best of Both Worlds: Machine Reasoning Optimized by Machine Learning
So, after all, why is machine learning just a fancy plugin that helps you to get results out of tons of data but also lets you jump into it again and again?

With machine learning you will never be able to adapt to change, which is what every company is looking for. Because change equals innovation! Thus, we consider machine learning as a mathematic optimization technique, which is fully optional. Talking about a decision-making process, everything works correctly without machine learning. Thus, the machine will find a solution on its own. Machine learning can be used to make the way to the solution shorter or more efficient by applying or selecting better knowledge. That's what machine learning is used for.

In our case, machine learning classifies the atomic knowledge pieces in the situation of a certain problem and prioritizes and chooses the better suited pieces to provide the best solution. Thus, machine learning helps to select the best knowledge to a specific state of a problem.

Thus, machine learning as well as deep learning never tells you what, when, where and why a system has solved a problem or has done the decision the way it did. The technologies and algorithms behind are like a black box and you will never get the reason, just a result.

Jerry Kaplan summarizes the pro and cons of machine reasoning vs. machine learning as "[...] symbolic reasoning is more appropriate for problems that require abstract reasoning, while machine learning is better for situations that require sensory perception or extracting patterns from noisy data."

Of course you have to identify which approach fits best for your specific situation. Or in Jerry Kaplan's words "[...] if you have to stare at a problem and think about it, a symbolic reasoning approach is probably more appropriate. If you look at lots of examples or play around with the issues to get a "feel" for It, machine learning is likely to be more effective."

By the way, if you want to read probably the best book on artificial intelligence on the market right now, get Jerry Kaplan's "Artificial Intelligence: What everyone needs to know".

About Rene Buest
Rene Buest is Director of Market Research & Technology Evangelism at Arago. Prior to that he was Senior Analyst and Cloud Practice Lead at Crisp Research, Principal Analyst at New Age Disruption and member of the worldwide Gigaom Research Analyst Network. At this time he was considered a top cloud computing analyst in Germany and one of the worldwide top analysts in this area. In addition, he was one of the world’s top cloud computing influencers and belongs to the top 100 cloud computing experts on Twitter and Google+. Since the mid-90s he is focused on the strategic use of information technology in businesses and the IT impact on our society as well as disruptive technologies.

Rene Buest is the author of numerous professional technology articles. He regularly writes for well-known IT publications like Computerwoche, CIO Magazin, LANline as well as Silicon.de and is cited in German and international media – including New York Times, Forbes Magazin, Handelsblatt, Frankfurter Allgemeine Zeitung, Wirtschaftswoche, Computerwoche, CIO, Manager Magazin and Harvard Business Manager. Furthermore he is speaker and participant of experts rounds. He is founder of CloudUser.de and writes about cloud computing, IT infrastructure, technologies, management and strategies. He holds a diploma in computer engineering from the Hochschule Bremen (Dipl.-Informatiker (FH)) as well as a M.Sc. in IT-Management and Information Systems from the FHDW Paderborn.

Presentation Slides
The revocation of Safe Harbor has radically affected data sovereignty strategy in the cloud. In his session at 17th Cloud Expo, Jeff Mille...
In his session at 21st Cloud Expo, Raju Shreewastava, founder of Big Data Trunk, provided a fun and simple way to introduce Machine Leaning ...

Register and Save!
Save $405
on your “Golden Pass”!
before October 30, 2017!
Call 201.802.3020


Santa Clara Call for Papers Open
Submit
submit your speaking proposal
for the upcoming WebRTC Summit in
Santa Clara!
[Oct 31- Nov 2, 2017]


WebRTC Summit 2017 West
Sponsorship Opportunities
Please Call
201.802.3021
events (at) sys-con.com
Sponsorship opportunities are now open for WebRTC Summit 2017 Santa Clara, Oct 31-Nov 2, 2017, at the Santa Clara Convention Center in Santa Clara, CA, and for WebRTC Summit 2018 New York, June 5-7, 2018, at the Javits Center in New York, NY. For sponsorship, exhibit opportunities and show prospectus, please contact Carmen Gonzalez, carmen (at) sys-con.com.



WebRTC Summit Silicon Valley All-Star Speakers Include

MATTHIEU
Octoblu

MAHADEV
Cisco

MCCARTHY
Bsquare

FELICIANO
AMDG

PAUL
VenueNext

SMITH
Eviot

BEAMER
goTraverse

GETTENS
goTraverse

CHAMBLISS
ReadyTalk

HERBERTS
Cityzen Data

REITBAUER
Dynatrace

WILLIAM-
SON

Cloud
Computing

SCHMARZO
EMC

WOOD
VeloCloud

WALLGREN
Electric Cloud

VARAN-
NATH

GE

SRIDHARA-
BALAN

Pulzze

METRIC
Linux

MONTES
Iced

ARIOLA
Parasoft

HOLT
Daitan

CUNNING-
HAM

ReadyTalk

BEDRO-
SIAN

Cypress

NAMIE
Cisco

NAKA-
GAWA

Transparent
Cloud

SHIBATA
Transparent
Cloud

BOYD
Neo4j

WARD
DWE

MILLER
Covisint

EVAVOLD
Covisint

MEINER
Oracle

MEEHAN
Esri

WITECK
Citrix

LIANG
Rancher Labs

BUTLER
Tego

ROWE
IBM Cloud

SKILLERN
Intel

SMITH
Numerex
WebRTC Summit New York All-Star Speakers Include

CLELAND
HGST

VASILIOU
Catchpoint

WALLGREN
Electric Cloud

HINCH-
CLIFFE

7Summits

DE SOUZA
Cisco

RANDALL
Gartner

ARM-
STRONG

AppNeta

SMALL-
TREE

Cazena

MCCARTHY
Bsquare

DELOACH
Infobright

QUINT
Ontegrity

MALAU-
CHLAN

Buddy Platform

PALIOTTA
Vector

MITRA
Cognizant

KOCHER
Grey Heron

PAPDO
POULOS

Cloud9

HARLAN
Two Bulls

GOLO
SHUBIN

Bit6

PROIETTI
Location
Smart

MARTIN
nfrastructure

MOULINE
Everbridge

MARSH
Blue Pillar

PARKS
SecureRF

PEROTTI
Plantronics

HOFFMAN
EastBanc

WATSON
Trendalyze

BENSON-
OFF

Unigma

SHAN
CTS

MATTELA
Redpine

GILLEN
Spark
Coginition

SOLT
Netvibes

BERN-
ARDO

GE Digital

ROMAN-
SKY

TrustPoint

BEAMER
GoTransverse

LESTER
LogMeIn

PONO
-MAREVA

Google

SINGH
Sencha

CALKINS
Amadeus

KLEIN
Rachio

HOASIN
Aeris

SARKARIA
PHEMI

SPROULE
Metavine

SNELL
Intel

LEVINE
CytexOne

ALLEN
Freewave

MCCAL-
LUM

Falconstor

HYEDT
Seamless

WebRTC Summit Silicon Valley All-Star Speakers Include

SCHULZ
Luxoft

TAM-
BURINI

Autodesk

MCCARTHY
Bsquare

THURAI
SaneIoT

TURNER
Cloudian

ENDO
Intrepid

NAKAGAWA
Transparent

SHIBATA
Transparent

LEVANT-LEVI
testRTC

VARAN NATH
GE

COOPER
M2Mi

SENAY
Teletax

SKEEN
Vitria

KOCHER
Grey Heron

GREENE
PubNub

MAGUIRE
HP

MATTHIEU
Octoblu

STEINER-
JOVIC

AweSense

LYNN
AgilData

HEDGES
Cloudata

DUFOUR
Webroot

ROBERTS
Platform

JONES
Deep

PFEIFFER
NICTA

NIELSEN
Redis

PAOLAL-
ANTORIO

DataArchon

KAHN
Solgenia

LOPEZ
Kurento

KIM
MapR

BROMHEAD
Instaclustr

LEVINE
CytexOne

BONIFAZI
Solgenia

GORBA-
CHEV

Intelligent
Systems

THYKAT-
TIL

Navisite

TRELOAR
Bebaio

SIVARAMA-
KRISHNAN

Red Hat
Cloud Expo New York All-Star Speakers Included

DE SOUZA
Cisco

POTTER
SafeLogic

ROBINSON
CompTIA

WARUSA
-WITHANA

WSO2 Inc

MEINER
Oracle

CHOU
Microsoft

HARRISON
Tufin

BRUNOZZI
VMware

KIM
MapR

KANE
Dyn

SICULAR
Basho

TURNER
Cloudian

KUMAR
Liaison

ADAMIAK
Liaison

KHAN
Solgenia

BONIFAZI
Solgenia

SUSSMAN
Coalfire

ISAACSON
RMS

LYNN
CodeFutures

HEABERLIN
Windstream

RAMA
MURTHY

Virtusa

BOSTOCK
IndependenceIT

DE MENO
CommVault

GRILLI
Adobe

WILLIAMS
Rancher Labs

CRISWELL
Alert Logic

COTY
Alert Logic

JACOBS
SingleHop

MARAVEI
Cisco

JACKSON
Softlayer

SINGH
IBM

HAZARD
Softlayer

GALLO
Softlayer

TAMASKAR
GENBAND

SUBRA
-MANIAN

Emcien

LEVESQUE
Windstream

IVANOV
StorPool

BLOOM-
BERG

Intellyx

BUDHANI
Soha

HATHAWAY
IBM Watson

TOLL
ProfitBricks

LANDRY
Microsoft

BEARFIELD
Blue Box

HERITAGE
Akana

PILUSO
SIASMSP

HOLT
IBM Cloudant

SHAN
CTS

PICCIN-
INNI

EMC

BRON-
GERSMA

Modulus

PAIGE
CenturyLink

SABHIKHI
Cognitive Scale

MILLS
Green House Data

KATZEN
CenturyLink

SLOPER
CenturyLink

SRINIVAS
EMC

TALREJA
Cisco

GORBACHEV
Systems Services Inc.

COLLISON
Apcera

PRABHU
OpenCrowd

LYNN
CodeFutures

SWARTZ
Ericsson

MOSHENKO
CoreOS

BERMING-
HAM

SIOS

WILLIS
Stateless Networks

MURPHY
Gridstore

KHABE
Vicom

NIKOLOV
GetClouder

DIETZE
Windstream

DALRY-
MPLE

EnterpriseDB

MAZZUCCO
TierPoint

RIVERA
WHOA.com

HERITAGE
Akana

SEYMOUR
6fusion

GIANNETTO
Author

CARTER
IBM

ROGERS
Virtustream
Cloud Expo Silicon Valley All-Star Speakers

TESAR
Microsoft

MICKOS
HP

BHARGAVA
Intel

RILEY
Riverbed

DEVINE
IBM

ISAACSON
CodeFutures

LYNN
HP

HINKLE
Citrix

KHAN
Solgenia

SINGH
Bigdata

BEACH
SendGrid

BOSTOCK
IndependenceIT

DE SOUZA
Cisco

PATTATHIL
Harbinger

O'BRIEN
Aria Systems

BONIFAZI
Solgenia

BIANCO
Solgenia

PROCTOR
NuoDB

DUGGAL
EnterpriseWeb

TEGETHOFF
Appcore

BRUNOZZI
VMware

HICKENS
Parasoft

KLEBANOV
Cisco

PETERS
Esri

GOLDBERG
Vormetric

CUMBER-
LAND

Dimension

ROSENDAHL
Quantum

LOOMIS
Cloudant

BRUNO
StackIQ

HANNON
SoftLayer

JACKSON
SoftLayer

HOCH
Virtustream

KAPADIA
Seagate

PAQUIN
OnLive

TSAI
Innodisk

BARRALL
Connected Data

SHIAH
AgilePoint

SEGIL
Verizon

PODURI
Citrix

COWIE
Dyn

RITTEN-
HOUSE

Cisco

FALLOWS
Kaazing

THYKATTIL
TimeWarner

LEIDUCK
SAP

LYNN
HP

WAGSTAFF
BSQUARE

POLLACK
AOL

KAMARAJU
Vormetric

BARRY
Catbird

MENDEN-
HALL

SUPERNAP

SHAN
KEANE

PLESE
Verizon

BARNUM
Voxox

TURNER
Cloudian

CALDERON
Advanced Systems

AGARWAL
SOA Software

LEE
Quantum

OBEROI
Concurrent, Inc.

HATEM
Verizon

GALEY
Autodesk

CAUTHRON
NIMBOXX

BARSOUM
IBM

GORDON
1Plug

LEWIS
Verizon

YEO
OrionVM

NAKAGAWA
Transparent Cloud Computing

SHIBATA
Transparent Cloud Computing

NATH
GE

GOKCEN
GE

STOICA
Databricks

TANKEL
Pivotal Software


Testimonials
This week I had the pleasure of delivering the opening keynote at Cloud Expo New York. It was amazing to be back in the great city of New York with thousands of cloud enthusiasts eager to learn about the next step on their journey to embracing a cloud-first worldl."
@SteveMar_Msft
General Manager of Window Azure
 
How does Cloud Expo do it every year? Another INCREDIBLE show - our heads are spinning - so fun and informative."
@SOASoftwareInc
 
Thank you @ThingsExpo for such a great event. All of the people we met over the past three days makes us confident IoT has a bright future."
Yasser Khan
CEO of @Cnnct2me
 
One of the best conferences we have attended in a while. Great job, Cloud Expo team! Keep it going."

@Peak_Ten


Who Should Attend?
Senior Technologists including CIOs, CTOs & Vps of Technology, Chief Systems Engineers, IT Directors and Managers, Network and Storage Managers, Enterprise Architects, Communications and Networking Specialists, Directors of Infrastructure.

Business Executives including CEOs, CMOs, & CIOs , Presidents & SVPs, Directors of Business Development , Directors of IT Operations, Product and Purchasing Managers, IT Managers.

Download Cloud Expo Show Guide
Cloud Expo Show Guide
Download PDF

Join Us as a Media Partner - Together We Can Rock the IT World!
SYS-CON Media has a flourishing Media Partner program in which mutually beneficial promotion and benefits are arranged between our own leading Enterprise IT portals and events and those of our partners.

If you would like to participate, please provide us with details of your website/s and event/s or your organization and please include basic audience demographics as well as relevant metrics such as ave. page views per month.

To get involved, email Patricia Henderson at patricia@sys-con.com.

Digital Transformation Blogs
Andrew Keys is Co-Founder of ConsenSys Enterprise. He comes to ConsenSys Enterprise with capital markets, technology and entrepreneurial experience. Previously, he worked for UBS investment bank in equities analysis. Later, he was responsible for the creation and distribution of life settlement products to hedge funds and investment banks. After, he co-founded a revenue cycle management company where he learned about Bitcoin and eventually Ethereal. Andrew's role at ConsenSys Enterprise is a multi-faceted approach of strategy and enterprise business development. Andrew graduated from Loyola Un...
While some developers care passionately about how data centers and clouds are architected, for most, it is only the end result that matters. To the majority of companies, technology exists to solve a business problem, and only delivers value when it is solving that problem. 2017 brings the mainstream adoption of containers for production workloads. In his session at 21st Cloud Expo, Ben McCormack, VP of Operations at Evernote, discussed how data centers of the future will be managed, how the public cloud best suits your organization, and what the future holds for operations and infrastructur...
Cloud computing delivers on-demand resources that provide businesses with flexibility and cost-savings. The challenge in moving workloads to the cloud has been the cost and complexity of ensuring the initial and ongoing security and regulatory (PCI, HIPAA, FFIEC) compliance across private and public clouds. Manual security compliance is slow, prone to human error, and represents over 50% of the cost of managing cloud applications. Determining how to automate cloud security compliance is critical to maintaining positive ROI. Raxak Protect is an automated security compliance SaaS platform and ma...